

European Train the Trainer Programme for Responders

Fuel Cells and Hydrogen Joint Undertaking (FCH JU) Grant Agreement Number 875089

Deliverable 2.7 Operational training materials for HyResponder

Lead authors: ENSOSP (Laurent LECOMTE) Contributing authors: ENSOSP (Franck VERRIEST and Wilfried STÉFIC), AL (Deborah HOUSSIN), UU (Sile BRENNAN)

Version: 3 Delivery date for internal review: 2021-02-28 Due date: 2021-02-28 Dissemination level: Public

Deliverable administration						
Work Package	WP2. Training material development					
N. and title	D 2.7 Operational training materials for HyResponder					
Туре	Report					
Status	Draft/Working/Released Due		Due	M14	Date	28-02-2021
Means of	Uploaded to the participant portal.					
verification						
Comments						
Development and revision						
Version N.	Date	Authors		Description		
1	25-06-2020	LECOMTE		1 st document draft		
2	28-02-2021	VERRIE	ST	Final version		ion
2	28-02-2021	S. BRENN	JAN	Project coordinator approval		or approval
3	16-12-2021	STEFIC	2	Request for revision		evision
3	20-12-2021	S. BRENN	JAN	Project coordinator approval		

Disclaimer

Despite the care that was taken while preparing this document the following disclaimer applies: the information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof employs the information at his/her sole risk and liability.

The document reflects only the authors' views. The FCH JU and the European Union are not liable for any use that may be made of the information contained therein.

Acknowledgments

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 875089. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Summary

The unique operational training facility in hydrogen safety previously built at ENSOSP must be upgraded to enable new training practices due to the risks of Liquid hydrogen (LH2) and Liquid Nitrogen (LNG).

The state of the art in hydrogen safety provides some information to improve the training for responders, including written materials and consolidation of relevant engineering tools.

HyResponder will capitalize on the previous investment in the unique facility, using it to train trainers and identifying how its use can be maximised beyond the project.

Keywords

LH2, Cryogenic, LNG, New tool, Upgrade, Virtual reality

Table of contents

Summary		3
Keywords		3
Introduction		5
The operational	I training platform	5
Location		5
Description		6
New Tool to cor	mpare LH2 and LNG phenomena	8
Accident scer	narios specific to LH2	8
Educational of	bjectives of the new tool	8
Proposal		11
December 20	021 update	12
Conclusion		13

Introduction

The HyResponder project will use practical approaches to achieve educational goals. There is a threefold training approach in HyResponder: educational, operational and virtual reality. The operational training, is carried out on the unique operational installations (European Hydrogen Safety Training Platform: EHSTP) of the ENSOSP site. This training is complemented by training using virtual reality software and virtual tactical rooms.

Within HyResponder, previously developed training materials will be developed and extended to train the trainers of responders. Thus, the existing ENSOSP platform must be upgraded to achieve this objective and to integrate the LH2 educational tool. It is planned to set up a comparative tool based on the reproduction of LH2 and LNG leaks.

Every effort will be made to replicate a realistic scenario for responders and/or demonstrate the core principles, whilst working within the constraints of what is feasible and indeed available with new technologies associated with LH2.

The operational training platform

Location

The EHSTP is located at the ENSOSP, 1070 rue du lieutenant Parayre 13798 Aix en Provence – France.

GPS Coordinates: 43.507590, 5.359310

Figure 1 location satellite view

Grant Agreement No: 875089 D 2.7 Operational training materials for HyResponder

Figure 2 location map view

Description

The EHSTP which is 2500m² wide is built on an area of 6000 m². It is divided into 10 operational exercises which can be combined in several scenarios.

Leak zone:

1A: Gaseous H2 1B : Gaseous	Methane 1C : LPG			
Explosion zone: 2: variable concentration explosion mock barrel (H2, Methane)				
Dismantled trailer: B: Dismantled long cigars mock trailer (H2)				
FCH Car: FCH car fire (roof and bottom TPRD) LPG)	Multi-energy car (hybrid): 5: variable release modes (H2, Methane,			
Reffuelling station: E: H2 leak				
On wheels trailer: 7: H2, methane Leak				
FUEL Cell container: 8: H2, methane Leak, technical failure				

Grant Agreement No: 875089 D 2.7 Operational training materials for HyResponder

Figure 3 EHSTP

New Tool to compare LH2 and LNG phenomena

A scenario is primarily defined by reviewing the existing training offering and making minor updates to the current platform and expanding the operational platform to incorporate LH2 activity based on the scenarios identified in WP1.

Accident scenarios specific to LH2

The different scenarios identified are:

- Liquid spreading
- Cryogenic cloud
- Liquid storage in fire
- Road accident and overturning of a liquid hydrogen trailer
- Release on a connection between the liquid hydrogen trailer and the storage
- o Ignited release
- ⇒ How to intervene, what equipment, how to communicate, with whom to communicate? For a safe, appropriate and effective intervention?

Educational objectives of the new tool

So what do we want to feel by the simulation to prepare the responder for the LH2 risk?

- Liquid spreading: what kind of behavior, from liquid to vapor, cold embrittlement of equipment, cold burn
- Cryogenic cloud: *limited visibility for intervention, anoxia risk, safety features frozen, containment of the cloud*
- o Release: *leak detection means*
- Deflagration due to flammable cloud ignition: *feel overpressure/energy*
- o Ignited high pressurized release: *flame length, radiative heat fluxes, invisible flame*
- Difference between *immediate and delayed ignition*
- More generally: what are the safety features on LH₂ applications for what where

In fact, the new tool must reach 2 principal goals:

- Enable creation of a cryogenic cloud,
- Activate ignition just on the leak or remote ignition.

Many solutions exist:

	Option 1 LH ₂	Option 2 Subcooled H ₂	Option 3 H ₂ + Cryo-N ₂ (LIN)
Description	LH ₂ released	Gaseous H_2 cooled and released + probably Cryo N_2	$\rm H_2$ released for ignited scenarios LIN released for liquid spreading and cryogenic cloud
Requirements	LH ₂ tank required	Heat exchanger for cooling $\rm H_2$ LIN	LIN
Advantages	« Real » conditions	No LH_2 Gaseous H_2 already on-site LIN easy to provide No increase of H_2 amount on-site (permitting aspects)	All is already available at ENSOSP No LH_2 Gaseous H_2 already on-site LIN easy to provide Easy to perform a non-scheduled demonstration No increase of H_2 amount on-site (permitting aspects)
Drawbacks	Manage LH ₂ handling Cost of the LH ₂ tank Timing for LH ₂ tank receipt LH2 cost LH2 supply (Mouthon, ENSOSP, on-site liquefier) Timing to perform a non-scheduled demonstration if required Additional safety features required Permitting document due to LH ₂ and associated additional H ₂ amount	Manage heat exchanger Heat exchanger cost	- Tbd

Figure 4 – Different options

Main equipment

*

Product	Provider	Use	Quantity
Ranger Euro-Cyl 600 L	Chart (via Cryopal) (delivery: 9 weeks)	Storage and pressurized LIN jet	2
Solenoid valve	tbd	Generate automatically and remotely pressurized LIN jet	1
Cryogenic equipment (flexible, O ₂ detector, cryo- gloves)	Cryopal	Safety	1
Cryogenic vessel Arpege 70 L	Cryopal	Auxiliary storage for pool spillage	1
Reverser	Schweyer (info@schweyer.fr)	Spill automatically and remotely LIN for pool	1
Inox retention pit	tbd	Contain the LIN pool	1
LIN filling	Air Liquide		450 L

Safety equipment

Equipment & procedure module, handling the appropriate equipment, feel the thresholds of devices

- Individual protection clothing + individual detectors (O2 for anoxia, multi-gas explosimeter)
- Intervene and act: leak hunting on H2 dispenser with several devices (e.g. acoustic detection, thermal IR camera...)
- Pedagogic materials: virtual visit of a LH2 refuelling station (video(s)), library of safety features – real or virtual, library of detection devices – real or virtual

Auxiliary equipment

- Leak detection devices for « Safety equipment & procedure » module
- Igniter for flange leak ignition for « Ignition, flame & deflagration » module
- Subcontract for operational platform PID drafting

Proposal

The third option [Gaseous H_2 + Liquid Nitrogen] is favored for the following reasons:

- ·: Safer
- : Easier to handling
- ·: More flexible
- ·: Less expensive
- : More realistic in terms of set-up taking into account the schedule requirement

Potentially additional media to complete the platform... to be defined regarding objectives and requirements of the training, and the remaining budget (2 locations available)

Figure 5 New tool location

This solution can be supplemented by virtual reality in the event of a scenario that cannot be simulated in reality.

December 2021 update

On 2021, December 16th, equipment has been purchased and implemented on the platform.

In details, this new tool is composed by:

- 2 cryogenic tanks
 - o Simulation of a liquid hydrogen leak with liquid nitrogen
- 1 thermal camera
 - Necessary to see the level of liquid in the tank and also useful for observing hydrogen flames on other simulators
- 4 infrared thermometers
 - Necessary to see the temperature of liquid and gas and also useful for observing hydrogen flames on others simulators
 - 4 thermometers allow up to 8 observers
- 2 oxygen detectors
 - Safety of the trainers and the trainees
- 4 pairs of cryogenic gloves, 2 cryogenic aprons, 2 pairs of cryogenic overboots
 Safety of the trainers
 - Gate, path to the platform and concrete slab to move the tanks to a safe area

Figure 6 The two LIN tanks simulating a liquid hydrogen leak

Figure 7 Zoom in on one of the LIN tanks

Conclusion

The technical choice for a new tool must reproduce the LH2 and LNG phenomena in the platform. The 3rd option with H2 and LIN allows a library of safety features to train the trainers. If a situation cannot be simulated, virtual reality (CRISE module) will allow these simulations to be completed. Details of the new unique facility at ENSOSP are given.