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Objectives of the lecture

1. Identify the main hazards of hydrogen use indoors

2. Explain pressure peaking phenomenon

3. Use nomograms to evaluate the possibility of pressure peaking  

phenomenon

4. Describe the main regimes on hydrogen indoor fires

5. Distinguish between passive and forced ventilation

6. Understand the effect of deflagration venting
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Hazards and risk of hydrogen use in enclosures

• Oxygen depletion and asphyxiation

• Effects of high temperature and heat flux from jet fires

• Overpressure effects

• Structural collapse

• “Domino” effects

• Damage to environment

• Injury and loss of life
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Hydrogen  phenomena and consequences 

Please see HyIndoor Guidelines for more details:
https://cordis.europa.eu/project/id/278534

https://cordis.europa.eu/project/id/278534
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Indoor hydrogen releases and dispersion

Hydrogen energy applications often require that systems are used indoors, e. g.

• industrial trucks for materials handling in a warehouse facility;

• fuel cells located in a room;

• hydrogen stored and distributed from a gas cabinet;

• some hydrogen system components/equipment inside indoor or outdoor enclosures.

The knowledge gaps were closed through the HyIndoor project:

• Hydrogen release inside a confined or semi-confined enclosure;

• Indoor hydrogen-air deflagration; 

• Jet fire and under-ventilated fire; 

• Hydrogen detection for confined spaces. 
Please see HyIndoor Guidelines for more details:
https://cordis.europa.eu/project/id/278534

https://cordis.europa.eu/project/id/278534
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Natural vs. passive ventilation

• Natural ventilation equations for air ventilation are derived in the assumption of equality of flow in 

and out (neutral plane is at half vent height).

• Passive ventilation: neutral plane for lighter than air gases can be anywhere below half of vent 

height.
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Safety implications
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Ventilation nomogram

• The nomogram is developed by UU to calculate the maximum

concentration for sustained hydrogen leak in an enclosure with one vent.

Allows to calculate:

• Steady-state hydrogen uniform concentration for the given release rate (Q)

and vent size (H  W).

• Parameters of the vent to get desired concentration for the given release

rate.

• The release rate to get desired concentration for the given vent sizes.
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Nomogram (Cmax steady-state)

Calculation examples:

• Release rate (1 g/s)

• Vent Height (1 m)

• Vent width (1 m)

• Function curve

• Concentration (7%)

1. RCS require no more than 2% 

v/v (50% LFL)

2. For the same 1  1 m vent 

release rate Q < 0.2 g/s

Q=1 g/s

7%

H=1 m

W=1 m

2%

Q<0.2 g/s

kg
/

s
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Pressure peaking phenomenon (1/4)

Pressure peaking is the phenomenon observed for the gases

which are very light (lighter than air), which can result in

overpressure exceeding the structural strength limit of an

enclosure or a building in the case of sufficiently high

hydrogen release rate.
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Pressure peaking phenomenon (2/4)

Garage: 4.52.62.6 m with a “brick” vent. 

Car: mass flow rate 390 g/s (H2: 350 bar, 5.08 mm 

orifice).

Definition: it is a transient peak in the pressure
dynamics during hydrogen release in
enclosures with vent(s).

Solution: decrease TPRD diameter 

(increase fire resistance of tank).

Overpressure limit for structures (10-15 kPa)
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Pressure peaking phenomenon (3/4)

Ignited release

• The phenomenon is the most pronounced for hydrogen as it has the lowest density. 

• It was described for the first time for unignited release of hydrogen by (Brennan et al 2013).

• With 5 mm TPRD and 350 bar storage in case of unignited release, e.g. due to TPRD fault, the 

garage would be demolished in less than in few seconds with overpressure peak above 60 kPa.

• TPRD opening in a fire conditions is expected to be much higher compared to a probability of 

unscheduled faulty opening of TPRD followed by an unignited release

• For an ignited release, a flow rate from the source is expected to be even smaller to generate PPP

• The difference in volumetric flow rate from the same source due to combustion is assessed as 

ac=22 times (Makarov et al. 2018)
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Pressure peaking phenomenon (4/4)

Overpressure ignited vs unignited

Overpressure dynamics of hydrogen jet fire in the garage: TPRD diameter 2 mm and storage 

pressure 70 MPa (release rate 107 g/s) Ignited (left) vs unignited (right)
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Pressure peaking phenomenon: step 1 of 2
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Pressure peaking phenomenon: step 2 of 2

The nomogram use:

1) Pressure p = 700 bar;

Orifice diameter  D = 5 mm

Vent size area A 0.07m  0.3m = 0.021 m2

Overpressure 60 kPa

2) Overpressure 8 kPa below the limit for structures.

Then the venting area in a garage should be A = 0.1 

m2, e.g. about 0.3m  0.32m (0.1m  1m). 

Garages in cold climate zones would not have such 

large vent area (and thus would be destroyed).

Non-reacting (unignited) releases.
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Pressure peaking phenomenon – e-Laboratory

URL: https://elab.hysafer.ulster.ac.uk/
Login: HyResponderTrainer Password: safetyfirst

https://elab.hysafer.ulster.ac.uk/
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Passive ventilation in an enclosure – e-Laboratory
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Carparks (1/2)

1% hydrogen mole fraction for release from 700 bar through a 0.5 mm 

TPRD diameter for downward release (left) and upward release (right). 

Source: H. Hussein, S. Brennan, V. Molkov. Dispersion of hydrogen release in a naturally ventilated covered car park. Int J Hydrogen Energy, 2020, 45: 23882-23897.

V. Shentsov, D. Makarov, V. Molkov, Effect of TPRD diameter and direction of release on hydrogen dispersion in underground parking. ICHS2021, ACCEPTED

Effect of ventilation versus no ventilation 

on hydrogen flammable envelope
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Carparks (2/2)

Iso-surface plots of 1% and 4% vol of hydrogen mole fraction for 2 mm TPRD diameter (left) compared to 0.5 

mm diameter (right) for different release direction at 20 s of flow time.

Source: H. Hussein, S. Brennan, V. Molkov. Dispersion of hydrogen release in a naturally ventilated covered car park. Int J Hydrogen Energy, 2020, 45: 23882-23897.
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Tunnel

• Several studies have showed that confinement or congestion can promote more severe 

consequences compared to the accidents in the open atmosphere. 

• A critical analysis of hazards and associated risks relevant to the use of FCH vehicles in the 

underground transportation systems were performed in the Deliverable 1.2 of HyTunnel-CS 

project. 

https://hytunnel.net/wordpress/wp-content/uploads/2019/09/HyTunnel-CS_D1.2_Risks-and-Hazards.pdf

1. Effect of ventilation velocity on dispersion in tunnels

2. Deflagration-to-Detonation transition (DDT) in tunnel

https://hytunnel.net/wordpress/wp-content/uploads/2019/09/HyTunnel-CS_D1.2_Risks-and-Hazards.pdf
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Effect of ventilation velocity on dispersion in tunnels

Ventilation strongly influences hazardous gases dispersion. The exact location of vehicles and the geometry of

the tunnel can be important because they affect the generated flow field.

The positive aspects are:

• it can dilute hydrogen concentrations minimizing the size of the flammable cloud;

• it can safely transport unlimited amount of hydrogen out of the tunnel through its portals and shafts if

hydrogen concentration is below LFL.

The negative aspects are:

• a flammable could may be extended further away from the release;

• the turbulence may be induced by ventilation which can enhance the combustion rate thus overpressures in

case of ignition.

In longitudinal ventilation, a minimum air speed is required to remove the hazardous gas and smoke. For fires in 

tunnels, the critical velocity is a function of heat release rate. The ventilation velocity value of 3.5 m/s seems to be 

sufficient for most tunnel fires to prevent the ‘back-layer’ effect, including large fires of more than 100 MW. 
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DDT in tunnel (1/3)

Main dimensions of the flat layer box (left) and the thin layer box installed inside the safety vessel (right) 

Source: Kuznetsov, M., Grune, J., Friedrich, A., Sempert, K., Breitung, W., Jordan, T. (2011) Hydrogen-air deflagrations and detonations in a semi-confined flat layer. In: Fire and

Explosion Hazards, Proceedings of the Sixth International Seminar (Edited by D. Bradley, G. Makhviladze and V. Molkov), 125-136.

Deflagration-to-Detonation transition 
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DDT in tunnel (2/3)

Critical conditions for an effective flame acceleration as function of expansion ratio vs. dimensionless vent area: 

sonic flame and detonations (open points), subsonic flame (solid points) 

Expansion ratio  as a 

function of the dimensionless 

vent area (defined as the ratio 

of layer thickness h and 

spacing between obstacles for 

semi-confined layer s)

Source: Kuznetsov, M., Grune, J., Friedrich, A., Sempert, K., Breitung, W., Jordan, T. (2011) Hydrogen-air deflagrations and detonations in a semi-confined flat layer. In: Fire and

Explosion Hazards, Proceedings of the Sixth International Seminar (Edited by D. Bradley, G. Makhviladze and V. Molkov), 125-136.
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DDT in tunnel (3/3)

Critical conditions for DDT in the 

relationship between the 

dimensionless layer thickness 

and hydrogen concentration: 

detonation (open points); no 

detonation (solid points) 

Source: Kuznetsov, M., Grune, J., Friedrich, A., Sempert, K., Breitung, W., Jordan, T. (2011) Hydrogen-air deflagrations and detonations in a semi-confined flat layer. In: Fire and

Explosion Hazards, Proceedings of the Sixth International Seminar (Edited by D. Bradley, G. Makhviladze and V. Molkov), 125-136.
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Hydrogen jet fire indoor

• Important to understand for practical applications.

• Behaviour of fire depends on the release conditions and geometry of 

an enclosure/ventilation.

• Well-ventilated and under-ventilated fires.



European Hydrogen Train the Trainer Programme for Responders

Confined space

Jet fire from a TPRD of a FC car in a garage

Size of a small garage L  W  H = 4.5  2.6  2.6 m (with a “brick”-sized vent). 

Mass flow rate: 390 g/s (350 bar, D=5.08 mm, today cars)

8s7s6s

5s3s1s

8s7s6s

5s3s1s
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Indoor hydrogen fires

Two regimes of indoor fires: 

• Well-ventilated: sufficient amount of oxygen (from the air) for complete 

combustion of hydrogen inside an enclosure

• Under-ventilated: insufficient amount of oxygen (from the air) to burn 

hydrogen completely 
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Jet fires: numerical experiments

Seven numerical experiments with a single vent were performed (a FC-like enclosure LWH=111

m; vertical upward release of hydrogen from 5 mm pipe with exit 10 cm above the floor centre; a

single vent located centrally at the top of one wall):

No. Vent size, HW Velocity, m/s Flow rate, g/s Result

1 Horizontal 3x30 cm 600 m/s 1.0857 Self-extinction

2 Horizontal 3x30 cm 300 m/s 0.5486 Self-extinction

3 Horizontal 3x30 cm 150 m/s 0.2714 External flame

4 Vertical 30x3 cm 600 m/s 1.0857 External flame

5 Vertical 30x3 cm 60 m/s 0.1086 Well ventilated

6 Vertical 13.9x3 cm 600 m/s 1.0857 Self-extinction

7 Vertical 13.9x3 cm 300 m/s 0.5486 External flame
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Well-ventilated fire (1/2)

H2OH

No.5: vertical vent 303 cm; release 60 m/s - 0.11 g/s.
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Well-ventilated fire (2/2)

No.5: vertical vent 30  3 cm; release 60 m/s - 0.11 g/s.

O2 T
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Simulation videos

Well-ventilated fire:
No.5 (vertical vent 303 cm; release 60 m/s, 0.11 g/s) - OH

No.5 – Temperature (70 C – “no harm” temperature)

Under-ventilated fire (two modes):
Self-extinction mode:

No.6 (vertical vent 13.93 cm, 600 m/s) – Temperature

No.6 – OH

External flame mode:

No.7 (vertical vent 13.93 cm, 300 m/s) – OH

No.4 (vertical vent 303 cm, 600 m/s) – Temperature

Vert_vent_30cm_60ms_OH_5e-5.divx
Vert_vent_30cm_60ms_Temp_343K.divx
6-Temperature Vert_vent_13.9cm_600ms_Temp_343K.divx
6-OH-Vert_vent_13.9cm_600ms_OH_5e-5.divx
7-OH Vert_vent_139mm_300ms_OH_5e-5.divx
4-Temperature_vert_vent_3x30cm_600ms.divx
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Simulation videos - Well-ventilated fire

• No.5 (vertical vent 303 cm; 

release 60 m/s, 0.11 g/s) - OH

• No.5 – Temperature (70 C – “no 
harm” temperature)

https://www.youtube.com/watch?v=r-
5BiBEd3So&list=PLlphoM9ggM3Rf-
Npmdq0S3WrCSpx0U4SL&index=16

https://www.youtube.com/watch?v=ogoWFbCidww&list=
PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=15

Vert_vent_30cm_60ms_OH_5e-5.divx
Vert_vent_30cm_60ms_Temp_343K.divx
https://www.youtube.com/watch?v=r-5BiBEd3So&list=PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=16
https://www.youtube.com/watch?v=ogoWFbCidww&list=PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=15
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Simulation videos - Under-ventilated fire (1/2)

No.6 (vertical vent 13.93 cm, 
600 m/s) – TemperatureNo.6 – OH

Self-extinction mode:

https://www.youtube.com/watch?v=1IyOym8dZLA&list=
PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=14

https://www.youtube.com/watch?v=R26jKam0Ug0&list=PLl
phoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=13

6-Temperature Vert_vent_13.9cm_600ms_Temp_343K.divx
6-OH-Vert_vent_13.9cm_600ms_OH_5e-5.divx
https://www.youtube.com/watch?v=1IyOym8dZLA&list=PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=14
https://www.youtube.com/watch?v=R26jKam0Ug0&list=PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=13
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Simulation videos - Under-ventilated fire (2/2)

No.4 (vertical vent 303 cm, 
600 m/s) – Temperature

No.7 (vertical vent 13.93 cm, 

300 m/s) – OH

External flame mode:

https://www.youtube.com/watch?v=fkyuhGEZDTU&list=
PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=12

https://www.youtube.com/watch?v=CA2Tkn81Du8&list=PLl
phoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=17

4-Temperature_vert_vent_3x30cm_600ms.divx
7-OH Vert_vent_139mm_300ms_OH_5e-5.divx
https://www.youtube.com/watch?v=fkyuhGEZDTU&list=PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=12
https://www.youtube.com/watch?v=CA2Tkn81Du8&list=PLlphoM9ggM3Rf-Npmdq0S3WrCSpx0U4SL&index=17
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Why two modes?

Self-extinction (No.2)External flame (No.4)

Vertical 30x3 cm 600 m/s Horizontal 3x30 cm 300 m/s
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Self-extinction of jet fire in a 1 m3 box

• Calculation domain hexahedron; LWH=764 m.

• Cubical enclosure LWH=111m.

• One horizontal vent HW=0.03x0.3 m under the ceiling (“tracer box”). The

vent size is calculated to ensure no air ingress after self-extinction, and that

pressure peaking (unignited) is below 1 kPa.

• Mass flow rate 1 g/s (50 kW fuel cell).

• Release from a pipe of 5.08 mm diameter located 10cm above the floor.

• Box has aluminium walls of thickness 20 mm
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Hydrogen indoor fire regimes 

The general rule for indoor fire with one upper vent is as follows. The

increase of hydrogen release flow rate changes fire regime from:

• well-ventilated fire (small leak rates), to

• under-ventilated fire with external flame (moderate flow rates), to 

• under-ventilated fire with self-extinction of combustion (higher flow 

rates), and again to

• under-ventilated fire with external flame (very high flow rates)
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Vented deflagrations

• Vented deflagration is based on a limiting of pressure build-up within an

enclosure through the release of burned and unburned mixtures through

a vent.

• If no venting is provided, the maximum pressures developed during the

deflagration are typically 6 to 10 times higher than the initial absolute

pressure.

• This is the most effective mitigation techniques for deflagrations. It is

discussed in more detail in the Lecture ‘Dealing with hydrogen

explosions’.
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Overlooked safety issue

• Problem: Hydrogen-powered car is in a closed garage of 44 m3 free 

volume. Release from an onboard storage through a TPRD of 5.08 mm 

diameter at pressure 350 bar gives mass flow rate 390 g/s (volumetric 

flow rate is 390/2*0.0224 = 4.4 m3/s). 

• Consequences: Every second of non-reacting release, pressure in the 

garage will increase by (44+4.4)/44=1.1 times, i.e. on 10 kPa. Civil 

building structures can withstand 10-20 kPa. 

Thus, in 1-2 s the garage “is gone”.
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